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This article considers a problem 
elastic half-plane to the impact 
frinction and cohesion. 

describing the dynamic response of an 
of a system of stamps in the absence of 

It is assumed that the reader is familiar with Sobolev’ s results, con- 

tained in Sections 3-4, chapter 12, [ 1 1. 

1. Uniqueness theorem. ‘lhe following basic 

problem will be considered. We are given a set, L 

mixed boundary value 
= L, + .*. + Ln, of 

intervals (a,, bk) arranged along the positive half o$ the x-axis in such 

a way that the endpoints of these intervals foxm a sequence (a,, bl, a2, 

b 2’ **a, Qn, b,). ‘Ihe following displacements are given on these intervals: 

7-z (z, 0, t> = f1(& t) + 4 (5, t), u(z, 0, t> = f*(G t> + d,(z, t) (1.1) 

where d.(x, t) = d.(t) (i = 1, 2) on L. We are also given the principal 
vector tX0, Yo) of’external forces applied to L (problem A), or di(r, t) = 
d. (tl (k = 1, 
(Q, YkO) of ‘C’ ’ 

n) on the segments L,, and the principal vectors 

ex ernal forces applied to each of the segments L, (problem 

B). On the remaining part L’ of the boundary are given the stresses 

q/(2, 0, t> =I A (5, q, ‘XU (z, 0, q = B(z, t) (1.2) 

In addition, we are given the body forces X, Y and the initial con- 
ditions. 
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Problem A and B as formulated can easily be reduced to a system of 

integral equations for stresses 0 and t on the segment L of the x-axis. 
For this purpose, on the basis ofYa resufc given in reference [ 1 1 , we 
may write the following equations 

2x1’ (to s - t) (%I# + 2P gJ CJt = M (%I, Y,, to) 
0 

2ii L” (t, - t)&Y, -2p&J dt = N (q, y,, to) 

(1.4) 

s 
0 

where 

M (~09 Yo, to) = - 

We obtain a similar equation for N from the expression of M if we replace 

the fundamental solution uio, vi0 of the longitudinal type by the funda- 
mental solution u 2OR v2 ’ of the transverse type. ‘Ibe volume ?’ is bounded 

by the surface of the characteristic cone and by the planes y = 0, t = 0, 

as shown in the figure. In equation (1.4) we let y. go to zero, and in- 
troducing the notation NX, t) = 0,(X, 0, t ), Q(x, t) = r ly(x, 0, t 1, we 
obtain 

2: ’ (to - t)Q(s,, t) dt = \\ [uz’ Iv,=& (z, t) + 
I 
0 i 

+ ~2’ jv,=oP (5, 01 dxdt + Q)z (a to) 

lkre the expressions Qi (x0, to) stand for known quantities. We next 
show that the solution of equations (1.5) is unique. In point of fact, 
iet us .~~ppose these equations have two solutions P,, Q,, and P,, Q2. 
Then zhere will correspondingly be two solutions, ul, u1 and u2, u2, of 
the equations of motion for the half-plan$ To the difference solution 
u=u -u 1 2’ v= vi- V2’ there will correspond the zero values of the 
initial data, of the body forces, of the stresses on the segment L’, and 
also o I the principal vector (x0, p ) on L in the problem A, and of the 
vector (X&O, Y,O) OF L, in tLe problem B. On L,, this difference solution 
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depends only on time: 

d&t) on L, in problem 
V, v= 

d,,(t) on L, in problem 

A 

B 

and, in accordance with the difference stresses P = P, - P2, Q = Q, - QZ, 

this difference solution can be expressed in terms of the latter by the 
for&as [ 1 1 

2wPu CG, Yo, to) = $+$, 2XPU (20, Yo, to) = a$ - g (I.61 

where 

‘lhe fundamental solutions make it possible to enlarge the region of 
integration S somewhat and make it independent of x0 and yO. We can there- 
fore easily justify the interchange of the order of differentiation and 
integration in (1.61, and obtain 

2rpu = ss K x 
8x0 + 

s 
$$)Q@s t) + (+$ + $$-) P(s,t)]dr dt 

(W 

25rpv = 
SSK 

au,0 -- 
aye 

s 
$$)Qh t> +(z-s)P(z, t)]dsdt 

The region S of integration can be replaced by a set of rectangles of 
height 8, = t,, - ro/a, where a is the propagation velocity of the longi- 
tudinal wave constructed on segment L,. The equation (1.8) then takes the 
form 

a.1 

2xpu = 
s iCK 
0 i 

-$$ +~)w t) t ($i~)P(Cc, t)]dz]dt 

2cPv= ~{j[(+~)q(z, t)+(~-~)P(xz, l)]dz}dt 

(1.9) 

0 L 

We note that the difference solution u, v and its derivatives are zero 
at the moment to at all points of the half-plane where rO > atO. 

Let B be a finite region bounded by the contour L in the X, y-plane, 
and let R be the exterior normal to L. Then 
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x~+y~)d,d,+S(.~*~+Y~~)de (1.10) 
B L 

Here T is the kinetic and V the potential energy of the elastic medium: 

T=t\\ p[($)'+($)2]d2:dy 
ri (1.11) 

v = \\ [; h (G + EL,)’ + r (~2 + q,’ + 2&j] dzdy 
i.3 

Let us construct the region BR in the half-plane y > 0 under consider- 

ation as follows. With the origin as center we describe a semicircle L, 

with a radius R so large that all segments L, will lie on its diameter 

inside the semicircle. Applying (1.10) to the region BR and to the diffe- 

rence solution, we obtain 

We will show that for all t: 

lim X,;+Y,,$)dl=O as R-+oo 

Lk 

(1.42) 

‘(1.13) 

Indeed, the in&grand in (1.13) is equal to zero at all points of the 

half-plane where R > c + at 

? 

(h ere c is the larger of the numbers 1 alI , 

1 b,\ ). Hence equation (1.13 is also valid at any moment at all points 

of”the half-plane T + V = const. 

But since the initial data are equal to zero for the 

tion, it follows that T + V = 0. l’hus, 

au av 
,1 = It 

=E,=Ev=r)ry=O 

that is, the difference solution corresponds to the rig i d displacement of 

the body. ‘Ihe stresses corresponding to this solution are zero; therefore, 
the difference stresses are zero at the points of the boundary of the 

ha1 f-plane: 

difference solu- 

(1.14) 

P = P, - P, = 0, Q=%-Qz=O (1.15) 

‘l’he uniqueness theorem is thus proved. 

2. Integral equation of the problem. Subsequently we will con- 
fine ourselves to considering the problem under the following boundary 

conditions: on the entire boundary y = 0 the tangential stresses 7 =Y 
are 
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given; on the part L of the boundary the displacements u are given, while 

on L’ the stresses u 
Y 

are given. We write the second of equations (1.4) 

in the foim (2.1) 

where 

N, (x0, yo, to) = - sjj cu;x + 2:;~) ds + 
‘1’ 

dxdy 

Letting the point MO approach a point P,, within the region { y = 0, 

xtL, O< t<~), wherer 
gral equation 

XY 
and v are given, for oy we obtain the inte- 

s\ * G” (x, t) lim VI dxdt = N, (x,,, 0, t,) 

s.9 U>‘3 
(2.2) 

where N2 includes known quantities which can be. computed from the initial 

and boundary conditions, while S is the limiting value of the cormnon part 

of region S and region D which is the set of all rectangles of height t0 

constructed on segnent L,. It is easy to evaluate the kernel of the equa- 

tion (2.2): 

0 

lim U; = K. (X - x0, to - t) = $. Re s iE v/n-2 - E2 
dE 

I, r;(E) ( 
“==SJ 

” 

(2.3) 

where b is the velocity of propagation of the transverse wave and F(t) is 

Rayleigh’s function. We note certain properties of kernel (2.3). It is 

singular with a singularity of order (x - x0)-l in the neighborhood of 

x0; it has a logarithmic infinity for values of 8 equal to the roots of 
Ray leigh’ s function, and is equal to zero on the boundary and outside the 

region So. ‘lhis latter circumstance makes it possible to write equation 
(2.2) in the form 

** KI (Iz--01. h,- t) s\ x - q 
P(x, t)dxdt = N,(x,, 0 to) (3.4) 

0 i 

where the kernel 

K, (is -x0 1, t, - q = 
p- X0) K, (5 -X0, t, - t) B SC 

\O II D-S= (2.5) 

is bounded in the neighborhood of x0. 
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The integral equation (2.4) of the Volterra type is of fundamental 

importance for the given problem. 

3. Reduction to the Singular Equation. Tne validity of all 

following operations is assumed in order to obtain the solution function. 

This, of course, will necessitate an ultimate verification of the assump- 

tions. We rewrite the equation (2.4) as 

(3.1) 

Applying the Laplace transform and making use of the convolution 

theorem, we obtain an equivalent singular equation for the problem 

Here K, (1 x - xO[ , s 1, P(x, s 1, f(zo, s) are the transforms of the 

functions K,((x - xc\, t), Hz, t), N2(x0, 0, t). It is easily verified 

that K, (0, s) = MT’ , where M is a known constant whole value can easily 

be found. 

We rewrite the equation (3.2) in the form 

1 c p (r, s) 1 
-- 

_I r - a.0 
clx + - zi c h-(x,, D’, s) P (3., s) dx = f(x,, s) (3.3) 

i i 

Here 

fC(X”, 7 

x s) = K, (I r -TO Is) - KI (0, s) 
Kl(O, $1 (1: - 20) 

Nhen h = p (Poisson’s hypothesis), the following expression can be 

given for the kernel 

where u = ( x - x0 1 . 
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Here A, il A;,, A3i are known constants, s is the velocity of frepaga- 
ticm of byleigh’s wave, and of. = o, a2 = b, nI t a, & = & a- * f3’* 

are real roots of the function 

F, (Z) =; - - 452 l,fa-2 _ k2 l//b-Z _ ~2 -- (b-2 - 32)2 

ft is not difficult to prove that 

fi (% fg, $) = lim &f~ 4-XI@. 4 -_ o 
(x - XOJ K (U, 4 

8s 2-q (3.5) 

and to show on the basis of (3.4) that the kernel K(r,, x, s) on L satis- 
fies the Hoelder condition with v < 1, 

Regularizing equation (3,3), we obtain I 2 1 

P (To, s) -+ K”hP (2, s) = A-*9 + P,z__t (;T& s) z fLq)> $3.6) 

Here 2(x0) is a canonical solution of the given class and PnWi(xO, XI 
is a polynomial of degree n - 1 whose coefficients depend on sl: 

‘&e homogeneous equation (3.5) has no roots different from zero (this 
is a consequence of the proved uniqueness theorem). Hence there exists 
one solution of equation (3.51, and one only. By means of the resolvent 
R(+ x, ~1, this solution can be written in the form 

Ihe constants C*(s) are found from the auxiliary conditions of 
A and B. Xn problem B, the forces Pk( t ) are given on each segment 
the image space we obtain 

(3.8) 

problem 
L,. In 

In the problem A, all dzk 
are equal, 

in formula (1.11, taken on the segments L,, 

A, (S) = & (S) = I.. = &,, (s) (?I. 10) 
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and we are given the entire pressure on all segments 

P(s) == j P(2, sfds (3.11) 

I, 

Substituting (3.8) into (3.9), or making use (as in the static case) 

of conditions (3.10) and (3.11)‘ we obtain (in either problem) a system 

of equations for the unknowns c,(s). This system has a unique solution 

which follows fom the established uniqueness theorem. 

Ihe resolvent R,(x,, i, s), considered as a function of s, has no 
singularities distinct from those of the kernel 

This resolvent is, therefore, holomorphic in the half-plane Re s = 

u > a0 > 0, and is bounded at infinity because the kernel N has this 

property. As is to be seen from the expression for N1, the behavior of 
this function of s is determined by the behavior of the kernel 

where, in accordance with (3.3), 

Rere 

If u = 0, namely, x = x0, then f$ = MS*, and K(xO, x0, s) = 0 for all 

s. Let u # 0. We will show that 

(3.13) 

remaining uniformly bounded, and tends to zero as 1 s 1 increases. Indeed, 

setting tl = st, we obtain 
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Here the integration has to be carried out along the ray arg tl = 

arg s = 45” const # 0. However, it is easy to show that this path of inte- 

gration csn be replaced by one which passes along the real axis, if the 

function F, has no imaginary zeros. Assuming 5 = s, let us estimate 

IQP, u) 1 for small values of 4. For the path of integration select- 

ing a segnent of a ray starting at the origin, 

we have 

Yr I\ (5, + a-‘) lb-2 - 2 (C, + u-1)212 1/C,’ - Zn-‘El 

F p-’ + 411 fll p-1 + 4Yf 
&I<max I(...)I$ ItI (3.15) 

II 

The parentheses (. . . 1 indicate the integrand, and we take the maximum 

of its absolute value on the segment indicated. Since 

(3. 16) 

max I(...) I <maxi 
(WY& + a-‘) [b-2 - 2 (W’E, + a-‘)?]? 

F (tu-‘jl + a-‘) F, (tu-I& + u-1) 

and since the expression standing between the absolute value signs is 

bounded by, say, L, we have 

(3.17) 

?hus the term ~~(5-l) u) approaches zero as d p goes to zero, and re- 

mains uniformly bounded. lbe same properties are possessed by the coeffi- 

cient of exp(- sb-lu) in the second term in expression (3.121, and hence 

by function K, fu, s). Consequently s + 00 may be taken as the limit under 

the integral sign of the integral determining N1. Since the limiting value 

is finite, the boundedness of the kernel Nr (x,, n, s) with s = m has thus 

been proved. In consequence of the boundedness of the resolvent R,, the 

first two terms in formula (3.6) and the function K’F belong to the class 

of functions that can be represented by means of a Laplace integral. It 

follows from this that all the C,(s) belong to this class. lhus the 

function PLO, s) given by formula (3.8) can be represented by means of 
a Laplace integral and by using a Mellin transform we can find the origina 
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P (x0, to) = -&- \ P (x0, s) ebl*ds (3.18) 
co--ib^ 

Let us verify that function P(x,, 
of fact function Pk,, 

t,) is a solution of (2.4). In point 
s), being a solution of (3.51, is a solution of 

the equivalent equation (3.2). 

Let c.(j = q + 1, 
Let us s&t 

..I, RI) be the values which Z(x> takes on at infinity. 

2 (3c) = 2, (2) 2&(x), (2, (X) = 5 (Z - cj)yj (-1 <ReQ<O)) 
j-94-1 

where Z,(Z) is a function bounded in the neighborhoods of the cj. 'lhen 
I%, s) = Z,(n> I-+, s), where P Cx, s) is a function bounded near the 
c. and belongs to the class H,. d 
f' 

e equation (3.2) can be written in the 

0X-m 

5 21 fX) “,1 y-- % I* 4 P, (2, s> dx = fi (5, s) 

L 
(3.19) 

We will establish the uniform convergence of the integral 

o,+iw 
1 
2rri 5 G(/x-- zcOj, s')P1(q s)e6*ds(s = a0 + ir, a0 > 0) 3.20) 

After division by the factor e4st, we have 

*d-~~ 
1 I s z- K1 (I 5 -x0 f, s) YlfX, S)&‘dT < 

a,--im 

< (3.21) 
-m 

because Is2ki(lx - r& , .s)(< A(s), jP,br, s)j <B(s), where A(s) and 
B(s) are bounded nonnegative functions. Hence, taking the Melfin trans- 
form of both parts of (3.20) and changing the order of integration, we 

obtain 

Kl(IX -xolt to- t) P, (x, t) dxdt = IV2 6% 0, to) (3.22) 
L 0 

or 

(3.23) 
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Fuuction (3.18) is thus seen to be in fact a solution of our problem. 
The existence theorem has thus been proved. 

In conclusion we note that if t e =, and if during this process the 
functions tend to definite limits, then, owing to (3.81, on the boundary 
we obtain the familiar solution of the static problem on the pressure of 
stamps on an elastic half-plane. 
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