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This article considers & problem describing the dynamic response of an
elastic half-plane to the impact of a system of stamps in the absence of
frinction and cohesion,

It is assumed that the reader is familiar with Sobolev’s results, con-
tained in Sections 3-4, chapter 12, [1 1.

1. Uniqueness theorem. The following basic mixed boundary value
problem will be considered. We are given a set, L =L, + ... + Ln, of
intervals (a,, b,) arranged along the positive half of the x-axis in such
a way that the endpoints of these intervals form a sequence (al, bi' a,,
by oees @, bn). The following displacements are given on these intervals:

u(xv 01 t)=f1(x1 t)+d1(‘z1 t)’ U(.‘I), O’ t)=/2(x1 t)+d2(.’13, t) (1"1)

where d.(x, t) = di(t) (i =1, 2) on L. We are also given the principal
vector (XO, Y?) of external forces applied to L (problem 4), or d (x, t)=
d, (t) (k=1, ..., n) on the segments L,, and the principal vectors

( ko, Yko) of external forces applied to each of the segments L, (problem
B). On the remaining part L’ of the boundary are given the stresses

oy(z, 0, t) == A(z, t), ey, 0, t) = B(z, 1) (1.2)

In addition, we are given the body forces X, Y and the initial con-
ditions.

7 '
u(x, Ys 0) = uo(xv y)v (3?)l=o = Up (.’IJ, _1/)

/v

(1.3)
v (@, ¥ 0) = vy (2, ), Gy =0 (2, 9)
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Problem A and B as formulated can easily be reduced to a system of
integral equations for stresses ¢_ and r __ on the segment L of the x-axis.
For this purpose, on the basis of'a resuf{ given in reference [1], we
may write the following equations

1y
27:& (to—t) { oy, + 21 g%o) dt = M (x4, Yo, o)
0
2-§ (to — 1))(ve, —20 5 ) 2 = o
g 0 A\ Txve P‘azo> dt = N (2o, Yo, to)
where 0
Mz yor to) = — (@ X +orDdet (| @ +00,) dude +

T 5

duy® av,° o Ou o OV
+P§% (u ot + v —a‘—-——ul -57—-2)1 —aT)d.’L'dy
1

We obtain a similar equation for N from the expression of M if we replace
the fundamental solution ulo, vlo of the longitudinal type by the funda-
mental solution uzo, vzo of the transverse type. The volume T is bounded
by the surface of the characteristic cone and by the planes y = 0, ¢t = 0,
as shown in the figure. In equation (1.4) we let y, go to zero, and in-
troducing the notation P(X, t) = oy(X, 0, t), Qlx, t) = rxy(x, 0, t), we
obtain

N : s M(Z4t
2:\ (to =) P20, 1) dll = SS (84 [yymo @ (%, 8) + CAY

.
0 S

+ 9,° y=0 P (2, )] dxdt 4+ @, (x,, to,)

3:5 (to — 1) Q (zo, t)dt = \ [ 1y s @ (x, 1) +
0 S

+ 2° |y, =0 P (%, )1 dzdl + Do (20, Lo) T (1.5)

lere the expressions ® . (x., t,) stand for known quantities. We next
show that the solution of equations (1.5) is unique. In point of fact,
iet us suppose these equations have two solutions P1' Ql, and PZ' Qz'
Then chere will correspondingly be two solutions, u;, v, and u,, v,, of
the equations of motion for the lhalf-planel To the difference solution
us=u - uy, v= v, ~ v,, there will correspond the zero values of the
initial data, of the body forces, of the stresses on the segment L”, and
also of the principal vector (X°, Y°) on L in the problem A, and of the
vector (Xko, Yko) on L, in tiie problem B. On L,, this difference solution
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depends only on time:

d,(t) on L, in problem 4
v, v =
d;(t) on L, in problem B

and, in accordance with the difference stresses P= P, - P,, Q=0Q, - Q,,
this difference solution can be expressed in terms of the latter by the
formulas [ 1]

aM 8N

L 250 Yo t) = J— I (1.6)

aM
ZWPu (xo, Yo, to) = "5;' + Va\‘/o

where

M= SX [4:°Q (z, ) +v,°P (z, t)] dzdt,
) 1.7

g\ (1.°Q (x, t) + v,°P (z, t)] dzdi

The fundamental solutions make it possible to enlarge the region of
integration S somewhat and make it independent of x, and y,. We can there-
fore easily Justlfy the interchange of the order of differentiation and
integration in (1.6), and obtain

e ] [(5 4+ 58) 0o 0+ (S04 55 Pt
S5
(1.8)
2o = (28— )00, ) + (55~ )Pl ]ie

Yo )
S

The region S of integration can be replaced by a set of rectangles of
height 6, = t, - r;/a, where a is the propagation velocity of the longi-
tudinal wave constructed on segment L,. The equation (1.8) then takes the
form

2o = ([ + 250 0+ (254 25 pes wafa

o ) . (1.9)
2w = W\ (Gr — 50) Q@ 0+ (55 = 55) P 0] ds)a
0 L

We note that the difference solution u, v and its derivatives are zero
at the moment t, at all points of the half-plane where ro > atg.

Let B be a finite region bounded by the contour L in the x, y-plane,
and let n be the exterior normal to L. Then
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-%(T+V)=§§(X§;-‘+Y%’;)dxdy+S(X,,Z_‘;+Yn?”)de (1.10)

E at
Here T is the kinetic and V the potential energy of the elastic medium:
1 (0 [[0u\? Jv\2
T=f:8§ e [(5) + (%) ] dzay
7 | (1.41)
V= RS [_; Mex &) 4 (st o'+ 2T2xu)} dzdy
B

Let us construct the region By in the half-plane y > 0 under consider-
ation as follows. With the origin as center we describe a semicircle Ly
with a radius R so large that all segments L, will lie on its diameter
inside the semicircle. Applying (1.10) to the region By and to the diffe-
rence solution, we obtain

d du v
LT +v) = S(X,,;ﬁ+y,,a_t)dz (1.12)
Lp
We will show that for all t:
. du ar
lim S(Xn a—}-Y,,m) dl=0  as R—oo (1.13)

Ly

Indeed, the integrand in (1.13) is equal to zero at all points of the
half-plane where R > ¢ + at, (here ¢ is the larger of the numbers |a1| ,
[b,!). Hence equation (1.133 is also valid at any moment at all points
of the half-plane T + V = const.

But since the initial data are equal to zero for the difference solu-
tion, it follows that T + V = 0, Thus,

du o
ngzzsx:Ey:T&y:O (1.14)
that is, the difference solution corresponds to the rigid displacement of
the body. The stresses corresponding to this solution are zero; therefore,
the difference stresses are zero at the points of the boundary of the

half-plane:
P=P—P,=0, Q=Q1—02=0 (1.15)

The uniqueness theorem is thus proved.

2. Integral equation of the problem. Subsequently we will con-
fine ourselves to considering the problem under the following boundary

conditions: on the entire boundary y = 0 the tangential stresses T gy T€
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given; on the part L of the boundary the displacements v are given, while
on L” the stresses o are given. We write the second of equations (1.4)

in the form (2.1)
[ »
22 (o= 0) (rmy— 20 ) dt =\ 43y + v}c0) dadt + N (i, yor 10)
0 8
where

Ny (%o, Yoy ty) = — W X + oY) de +

ol (u 2
S

Letting the point M, approach a point P, within the region {y = 0,
xel, 0K t <o}, where T oxy and v are given, for o, we obtain the inte-
gral equation

0o, ou du
2 ° )
+U—6T'—u2'52 1723‘ dzdy

SX oy (2, 1) lim o} dzdt = N, (zq, 0, ) (2.2)
" Pl

S

where N, includes known quantities which can be computed from the initial
and boundary conditions, while S is the limiting value of the common part
of region S and region D which is the set of all rectangles of height t,
constructed on segment L,. It is easy to evaluate the kernel of the equa-
tion (2.2):
0
lunv;-_—Ko(x—xo, to—-t)=—:—2-Reg%—i‘zds (9= ;::tl)
(2.3)

vhere b is the velocity of propagation of the transverse wave and F(£) is
Rayleigh’s function. We note certain properties of kernel (2.3). It is
singular with a singularity of order (x - :co)'1 in the neighborhood of
%,; it has a logarithmic infinity for values of 6 equal to the roots of
Rayleigh's function, and is equal to zero on the boundary and outside the

region S°, This latter circumstance makes it possible to write equation
(2.2) in the form

z, tydzdt = Ny (2, 0 &) (2.4)

r— Xy

lglg Ki(Jz—z0], th— 1) P(
oL

where the kernel

[(z—x0) Ko (z—2, tog—1t) B S°

|0n D—§° (2.5)
is bounded in the neighborhood of Xy

K, (i —zy|, tg—1t) =
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The integral equation (2.4) of the Volterra type is of fundamental
importance for the given problem,

3. Reduction to the Singular Equation. The validity of all
following operations is assumed in order to obtain the solution function.
This, of course, will necessitate an ultimate verification of the assump-
tions. We rewrite the equation (2.4) as

t,

g ! g K (z—x,|, ty —t)P(x, t)didz = V, 3.1)

r — x,

0

Applying the Laplace transform and making use of the convolution
theorem, we obtain an equivalent singular equation for the problem

(MU=l D p g dz = f(z ) (=54 in620>0  (32)
L
Here K, (|x - x.|, s), P(x, s), f(xy, s) are the transforms of the
functions K (|x - xol t), P(x, t), N,(xy, 0, t). It is easily verified
that K (0, s) = M5!, where M is a known constant whole value can easily

be found.

We rewrite the equation (3.2) in the form

ii g’;(_r_:) da + ~1¢ SK(%’ x, $YP(x, s)dx = f(xo, 5) (3.3)
L L

Here

. K (z —ols) —Ki (0, 5)
A (fo, x, S) - K, (0, S) (x_IO)

When A = ¢ (Poisson’s hypothesis), the following expression can be
given for the kernel

K(xOI X, S) K (07 3) = Sign (.’L —_ .’[0) { 2 ‘-‘10 g .__lﬂ_(_t)u;l_ e—stdt+
i=1 S
- % arc tg L et dt 4 i 4t ‘2°]I ‘y_______(t) e—stdt —
2] ”l : € 0 Eix 4 8 \
i, k=1 9; i=1 3
: ? ’ = ,
—_ )‘ A xte—sf (l[} (61: —a—) (34)
0 . 1

~
/o1 1
U, = / —_
Sik 2 B
‘/ a; a,

"R 1
Xi(t)=l/u2_5i7' h—‘l/

where u = {x - x| .
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Here A A‘i, A.% are known constants, s is the velocity of propaga-
tion of Raylexgh s wave, and a, =a, a, = b, a,=a, 51 =8, a*, ;3'2
are real roots of the funcnon

Fi@)=42ya 2 g2 )Ypi—g2-- (b7 — 23%)2

It is not difficult to prove that

K {u, s} Ky (0, 3)
{x — xq) K (U, 5)

K(xo, 3"0, S)“—“: Iim = 0 as x—’x{) (3‘5)

and to show on the basis of (3.4) that the kernel K(xc, %z, s) on L satis-
fies the Hoelder condition with v < 1,

Regularizing equation (3,3), we obtain [2]
P(zg, 8) 4 K*KP (z, s) = K*f + Pny (20, ) Z (o) (3.6)

Here Z(x ) is a canonical solution of the given class and Pn—-—l("O' x)
is a polynomial of degree n — 1 whose coefficients depend on s,:

» z d ' tad
R*f = 1(50) R Z* (rf(:-— zo) K*KP = _m_ §1V(x°’ z, §) P(z, s)dz
L
(3.7)

Nz, 2, §) =

Z (o) gK {z1, z, §)dxy
wi ) Z* (@) (w1 — %)
L

The homogeneous equation (3.5) has no roots different from zero (this
is a consequence of the proved uniqueness theorem). Hence there exists
one solution of equation (3.5), and one only. By means of the resolvent
R(xo, x, s), this solution can be written in the formm

Pz, §) = (Af + SRt (o, z, $) K*fdz +C,(s) (%ﬂ-1+
L

4 SR;(%, z, s)x"*lZ(x)dx)—}—...-}—Cﬂ(s)(l—}—\R (%o, x, s)Z(:c)d:c)}Z(rﬂ)
L
B, (%o, 7, ) = ﬁ%—;—i’_ (3.8)
The constants Cﬁ(s) are found from the auxiliary conditions of probiem

A and B. In problem B, the forces P,(t) are given on each segment L,.
the image space we obtain

Py =\ Pz, s)de =1 .m (3.9)
Ly
In the problem 4, all d,, in formula (1.1), taken on the segments L,,
are equal,

doy (8) = daa (8) = .. = dun (8) (3.10)
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and we are given the entire pressure on all segments

P(s) = Sp(x, s)dz (3.11)
L
Substituting (3.8) into (3.9), or making use (as in the static case)
of conditions (3.10) and (3.11), we obtain (in either problem) a system
of equations for the unknowns C,(s). This system has a unique solution
which follows from the established uniqueness theorem,

The resolvent R (xO, %, s}, considered as a function of s, has no
singularities dlstmct; from those of the kernel
_ Nz, z, 9
N (xy, z, 8)= ey
This resolvent is, therefore, holomorphic in the half-plane Re s =
o >0, >0, and is bounded at infinity because the kernel N has this
property. As is to be seen from the expression for N,, the behavior of
this function of s is determined by the behavior of the kernel

SPM-1K (e, 8) —1

T — X,

K(.’l‘o, x, .‘3‘) = - , u:lx-_._xu{

where, in accordance with (3.3},

K,y (u, s) = —ucxp w:u \ i b (& an(E, B) dee—s dt—

AR FFy
0 at
— U CXP *bsug g Agtm? (E’;}lm AR dée—st dt (3.12)
0 b=
Here
nt (Ev I/E2 - -;I' ) E’ f') 2T 252
1 t 1
=gt m=g b

If u= 0, namely, x = x,, then K, = Ms?, and K(x;, x,, s) = 0 for all
s. Let u £ 0. We will show that

o !,
I, (s, u) *-—sug G MED et dy (3.13)
O

[

remaining uniformly bounded, and tends to zero as |s| increases. Indeed,
setting t, = st, we obtain
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(3.14)

o 3:
\ g, HE D _ / 1 t
II, (s, u)=sug[ S Sull ;);1 & dE} e—tdt (\1‘)1 =T+TJ>
0

a~d

Here the integration has to be carried out along the ray arg ¢, =
arg s = ¢ = const # 0, However, it is easy to show that this path of inte-
gration can be replaced by one which passes along the real axis, if the
function F, has no imaginary zeros. Assuming £ = s, let us estimate
A (¢~1, u)| for small values of {. For the path of integration select-
ing a segment of a ray starting at the origin,

7151379, p=|%l, G =0— —~

we have

fu=1y [P ——

. -1y 152 -2 SR VEE —2a18, ,, t =
l x hte )J"(a“ +<EC:);;?G‘3L-€1§I — d& | S max |()’—;,C! (3.15)

L]

The parentheses (...) indicate the integrand, and we take the maximum
of its absolute value on the segment indicated. Since
(3. 16)

@uiE 4 a ) b2 — 2 (tu=1E, 4 a7 )P 1/_3. /7 1
max i( ) maxi F(zu‘1§1 + a‘l} Fl (‘“_lal + a") T V - El + -

and since the expression standing between the absolute value signs is
bounded by, say, L, we have
oo
1111((:, )\<Ly’pgze-fdt=i,vp (3.17)
O
Thus the tem nl(('l, u) approaches zero as \/ p goes to zero, and re-
mains uniformly bounded. The same properties are possessed by the coeffi-
cient of exp(~ sb™'u) in the second term in expression (3.12), and hence
by function K, {u, s). Consequently s » = may be taken as the limit under
the integral sxgn of the integral determining N,. Since the limiting value
is finite, the boundedness of the kernel N, (xo, x, s) with s = o« has thus
been proved. In consequence of the boundedness of the resolvent Ri' the
first two terms in formula (3.6) and the function K*F belong to the class
of functions that can be represented by means of a Laplace integral. It
follows from this that all the C,(s) belong to this class. Thus the
function Plx), s) given by formula (3.8) can be represented by means of
a Laplace integral and by using a Mellin transform we can find the original
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a,+ioo
Pz, to) = "2‘1;:“ S P (o, 5)etods (3.18)

Gy—ior

Let us verify that function P(x,, t;) is a solution of (2.4). In point
of fact function P(xo, s), being a solution of (3.5), is a solution of
the equivalent equation (3.2),

let ¢.{j =g+ 1, ..., m) be the values which Z(x) takes on at infinity.

Let us set
m

Z(@)=Z(2) Zo(2), (Za(@)= 2} (z—¢;)ti  (—1<Rey;<0))
j=qtl
where Z,(x) is a function bounded in the neighborhoods of the c.. Then
P(x, s) = Zl(x) Pl(x, s), where P, (x, s) is a function bounded near the
c. and belongs to the class H_. 'Iﬁe equation (3.2) can be written in the
orm

S Zy (x)K1 (!x-—xg I» S) Pl (-’B, s)dz o fl (z’ s) (3.19)

r—z
]
L

We will establish the uniform convergence of the integral

ag+ico
= S Ki(|z— %], §)Py(z s)estds(s = ag + i, 0 > 0) 3.20)
g,—~%00 ¢
After division by the factor ¢’s?, we have
0o-}-ic0
1
l_f? S Ki(|z—x, s)Pi(z, s)eitdr ’ <
C sk (z—z,], || P 1 ( A@B
<S 152K (| 2;03!318) I} P1(z18) dr << 5 S (7),9]8 (s) d= (3-21)
—-—00 ~—00

because !szkl(lx - x5l , s)| < Als), [P (x, s)| < Bls), where A(s) and
B(s) are bounded nonnegative functions. Hence, taking the Mellin trans-
form of both parts of (3.20) and changing the order of integration, we
obtain

tn

(-2 (K (1 — 2ol to— O Py(@, )dodt = Na(m, 0, L) (3:22
0

T — 2,

or
1,

S % Ky(lz—a], bh—HPi( 1) g0y Ny (2o, 0, o) (3.23)
b L

z -z,
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Function (3.18) is thus seen to be in fact a solution of our problem.
The existence theorem has thus been proved.

In conclusion we note that if t + «, and if during this process the
functions tend to definite limits, then, owing to (3.8), on the boundary
we obtain the familiar solution of the static problem on the pressure of
stamps on an elastic half-plane.
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